Chapter 4

Best Approximation

4.1 The General Case

In the previous chapter, we have seen how an interpolating polynomial can be used as an approximation to a given function. We now want to find the best approximation to a given function.

This fundamental problem in Approximation Theory can be stated in very general terms. Let V be a Normed Linear Space and W a finite-dimensional subspace of V, then for a given $v \in V$, find $w^* \in W$ such that

$$
\|v - w^*\| \leq \|v - w\|
$$

for all $w \in W$. Here w^* is called the Best Approximation to v out of the subspace W. Note that the definition of V defines the particular norm to be used and, when using that norm, w^* is the vector that is closest to v out of all possible vectors in W. In general, different norms lead to different approximations.

In the context of Numerical Analysis, V is usually the set of continuous functions on some interval $[a, b]$, with some selected norm, and W is usually the space of polynomials P_n. The requirement that W is finite-dimensional ensures that we have a basis for W.

Least Squares Problem

Let $f(x)$ be a given particular continuous function. Using the 2-norm

$$
\|f(x)\|_2 = \left(\int_a^b f^2(x)dx \right)^{1/2}
$$

find $p^*(x)$ such that

$$
\|f(x) - p^*(x)\|_2 \leq \|f(x) - p(x)\|_2,
$$
for all \(p(x) \in P_n \), polynomials of degree at most \(n \), and \(x \in [a, b] \).

This is known as the **Least Squares Problem**. Best approximations with respect to the 2-norm are called **least squares approximations**.

4.2 Least Squares Approximation

In the above problem, how do we find \(p^*(x) \)? The procedure is the same, regardless of the subspace used.

So let \(W \) be any finite-dimensional subspace of dimension \((n + 1)\), with basis vectors

\[
\phi_0(x), \phi_1(x), \ldots \text{ and } \phi_n(x).
\]

Therefore, any member of \(W \) can be expressed as

\[
\Psi(x) = \sum_{i=0}^{n} c_i \phi_i(x),
\]

where \(c_i \in \mathbb{R} \). The problem is to find \(c_i \) such that \(\|f - \Psi\|_2 \) is **minimised**.

Define

\[
E(c_0, c_1, \ldots, c_n) = \int_a^b (f(x) - \Psi(x))^2 dx.
\]

We require the minimum of \(E(c_0, c_1, \ldots, c_n) \) over all values \(c_0, c_1, \ldots, c_n \). A necessary condition for \(E \) to have a minimum is:

\[
\frac{\partial E}{\partial c_i} = 0 = -2 \int_a^b (f - \Psi) \frac{\partial \Psi}{\partial c_i} dx,
\]

\[
= -2 \int_a^b (f - \Psi) \phi_i(x) dx.
\]

This implies,

\[
\int_a^b f(x) \phi_i(x) dx = \int_a^b \Psi \phi_i(x) dx,
\]

or

\[
\int_a^b f(x) \phi_i(x) dx = \int_a^b \sum_{j=0}^{n} c_j \phi_j(x) \phi_i(x) dx.
\]

Hence, the \(c_i \) that minimise \(\|f(x) - \Psi(x)\|_2 \) satisfy the system of equations given by

\[
\int_a^b f(x) \phi_i(x) dx = \sum_{j=0}^{n} c_j \int_a^b \phi_j(x) \phi_i(x) dx, \quad \text{for } i = 0, 1, \ldots, n,
\]

a total of \((n + 1)\) equations in \((n + 1)\) unknowns \(c_0, c_1, \ldots, c_n \).

These equations are often called the **Normal Equations**.
Example 4.2.1 Using the Normal Equations (4.1) find the \(p(x) \in P_n \) the best fits, in a least squares sense, a general continuous function \(f(x) \) in the interval \([0, 1]\).

i.e. find \(p^*(x) \) such that

\[
\| f(x) - p^*(x) \|_2 \leq \| f(x) - p(x) \|_2,
\]

for all \(p(x) \in P_n \), polynomials of degree at most \(n \), and \(x \in [0, 1] \).

Take the basis for \(P_n \) as

\[
\phi_0 = 1, \phi_1 = x, \phi_2 = x^2, \ldots, \phi_n = x^n.
\]

Then

\[
\int_0^1 f(x)x^i dx = \sum_{j=0}^n c_j \int_0^1 x^j x^i dx
\]

\[
= \sum_{j=0}^n c_j \int_0^1 x^{i+j} dx
\]

\[
= \sum_{j=0}^n c_j \left[\frac{x^{i+j+1}}{i+j+1} \right]_0^1
\]

\[
= \sum_{j=0}^n c_j \frac{1}{i+j+1}.
\]

Or, writing them out:

\[
i = 0: \quad \int_0^1 f(x) dx = c_0 + \frac{c_1}{2} + \frac{c_2}{3} + \cdots + \frac{c_n}{n+1}
\]

\[
i = 1: \quad \int_0^1 x f(x) dx = \frac{c_0}{2} + \frac{c_1}{3} + \frac{c_2}{4} + \cdots + \frac{c_n}{n+2}
\]

\[
\cdots
\]

\[
i = n: \quad \int_0^1 x^n f(x) dx = \frac{c_0}{n+1} + \frac{c_1}{n+2} + \cdots + \frac{c_n}{2n+1}
\]

Or, in matrix form:

\[
\begin{bmatrix}
1 & 1/2 & \cdots & 1/n+1 \\
1/2 & 1/3 & \cdots & 1/n+2 \\
\vdots & \vdots & \ddots & \vdots \\
1/n+1 & 1/n+2 & \cdots & 1/2n+1
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
\vdots \\
c_n
\end{bmatrix}
=
\begin{bmatrix}
\int_0^1 f(x) dx \\
\int_0^1 x f(x) dx \\
\vdots \\
\int_0^1 x^n f(x) dx
\end{bmatrix}
\]

Does anything look familiar? A system \(HA = f \) where \(H \) is the Hilbert matrix. This is seriously bad news - this system is famously ILL-CONDITIONED! We will have to find a better way to find \(p^* \).
4.3 Orthogonal Functions

In general, it will be hard to solve the Normal Equations, as the Hilbert matrix is ill-conditioned. The previous example is an example of what not to do!

Instead, using the same approach as before choose (if possible) an orthogonal basis \(\phi_i(x) \) such that
\[
\int_a^b \phi_i(x) \phi_j(x) \, dx = 0, \quad i \neq j.
\]

In this case, the Normal Equations (4.1) reduce to
\[
\int_a^b f(x) \phi_i(x) \, dx = c_i \int_a^b \phi_i^2(x) \, dx, \quad \text{for } i = 0, 1, \ldots, n, \tag{4.2}
\]
and the coefficients \(c_i \) can be determined directly. Also, we can increase \(n \) without disturbing the earlier coefficients.

Note, that any orthogonal set with \(n \) elements is linearly independent and hence, will always provide a basis for \(W \), an \(n \) dimensional space.

4.3.1 Generalisation of Least Squares

We can generalise the idea of least squares, using the inner product notation.

Suppose we define
\[
\| f \|_2^2 = \langle f, f \rangle,
\]
where \(\langle \cdot, \cdot \rangle \) is some inner product (e.g., we considered the case \(\langle f, g \rangle = \int_a^b fg \, dx \) in Chapter 1).

Then the least squares best approximation is the \(\Psi(x) \) such that
\[
\| f - \Psi \|_2
\]
is minimised, i.e. we wish to minimise \(\langle f - \Psi, f - \Psi \rangle \).

Writing \(\Psi(x) = \sum_{i=0}^n c_i \phi_i(x) \), where \(\phi_i \in P_n \) and form a basis for \(P_n \) and expressing orthogonality as \(\langle \phi_i, \phi_j \rangle = 0 \) for \(i \neq j \), then choosing
\[
c_i = \frac{\langle f(x), \phi_i(x) \rangle}{\langle \phi_i(x), \phi_i(x) \rangle}
\]
(c.f. equation 4.2) guarantees that \(\| f - \Psi \|_2 \leq \| f - p \|_2 \) for all \(p \in P_n \). In other words, \(\Psi \) is the best approximation to \(f \) out of \(P_n \). (See Tutorial sheet 4, question 1 for a derivation of this result).

Example 4.3.1 Find the least squares, straight line approximation to \(x^{1/2} \) on \([0, 1]\). i.e., find the \(\Psi(x) \in P_1 \) that best fits \(x^{1/2} \) on \([0, 1] \).
First choose an orthogonal basis for \(P_1 \):

\[
\phi_0(x) = 1 \quad \text{and} \quad \phi_1(x) = x - \frac{1}{2}.
\]

These form an orthogonal basis for \(P_1 \) since

\[
\int_0^1 \phi_0 \phi_1 \, dx = \int_0^1 (x - \frac{1}{2}) \, dx = \left[\frac{1}{2} x^2 - \frac{1}{2} x \right]_0^1 = \frac{1}{2} - \frac{1}{2} = 0.
\]

Now construct \(\Psi = c_0 \phi_0 + c_1 \phi_1 = c_0 + c_1(x - \frac{1}{2}) \).

To find the \(\Psi \) which satisfies \(\| f - \Psi \| \leq \| f - p \| \), we solve for the \(c_i \) as follows...

\[i=0: \]

\[
c_0 = \frac{\langle f, \phi_0 \rangle}{\langle \phi_0, \phi_0 \rangle}
\]

\[
\bullet \, \langle f, \phi_0 \rangle = \langle x^{1/2}, 1 \rangle = \int_0^1 x^{1/2} \, dx = \left[\frac{2}{3} x^{3/2} \right]_0^1 = \frac{2}{3}
\]

\[
\bullet \, \langle \phi_0, \phi_0 \rangle = \langle 1, 1 \rangle = \int_0^1 1 \, dx = 1
\]

\[\Rightarrow c_0 = \frac{2}{3} \]

\[i=1: \]

\[
c_1 = \frac{\langle f, \phi_1 \rangle}{\langle \phi_1, \phi_1 \rangle}
\]

\[
\bullet \, \langle f, \phi_1 \rangle = \langle x^{1/2}, x - \frac{1}{2} \rangle = \int_0^1 x^{1/2}(x - \frac{1}{2}) \, dx = \int_0^1 (x^{3/2} - \frac{3}{2} x^{1/2}) \, dx = \left[\frac{2}{3} x^{3/2} - \frac{3}{2} x^{1/2} \right]_0^1 = \frac{1}{15}
\]

\[
\bullet \, \langle \phi_1, \phi_1 \rangle = \langle x - \frac{1}{2}, x - \frac{1}{2} \rangle = \int_0^1 (x - \frac{1}{2})^2 \, dx = \int_0^1 (x^2 - x + \frac{1}{4}) \, dx = \left[\frac{1}{3} x^3 - \frac{3}{2} x^2 + \frac{x}{4} \right]_0^1 = \frac{1}{12}
\]

\[\Rightarrow c_1 = \frac{12}{15} = \frac{4}{5} \]

Hence, the least squares, straight line approximation to \(x^{1/2} \) on \([0, 1] \) is \(\Psi(x) = \frac{2}{3} + \frac{4}{5} \left(x - \frac{1}{2} \right) = \frac{4}{5} x + \frac{1}{5} \).

Example 4.3.2 Show that a truncated Fourier Series is a least squares approximation of \(f(x) \) for any \(f(x) \) in the interval \([-\pi, \pi] \).

Choose \(W \) to be the \(2n + 1 \) dimensional space of functions spanned by the basis

\[
\phi_0 = 1, \phi_1 = \cos x, \phi_2 = \sin x, \phi_3 = \cos 2x, \phi_4 = \sin 2x, \ldots, \phi_{2n-1} = \cos nx, \phi_{2n} = \sin nx,
\]

This basis forms an orthogonal set of functions:

\[e.g. \]

\[
\int_{-\pi}^{\pi} \phi_0 \phi_1 \, dx = \int_{-\pi}^{\pi} \cos x \, dx = [\sin x]_{-\pi}^{\pi} = 0, \quad \text{etc.,} \ldots
\]
Thus, a least squares approximation $\Psi(x)$ of $f(x)$ can be written

$$\Psi(x) = c_0 + c_1 \cos x + c_2 \sin x + \cdots + c_{2n-1} \cos nx + c_{2n} \sin nx,$$

with the c_i given by

$$c_0 = \frac{\langle f, \phi_0 \rangle}{\langle \phi_0, \phi_0 \rangle} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx,$$

$$c_1 = \frac{\langle f, \phi_1 \rangle}{\langle \phi_1, \phi_1 \rangle} = \int_{-\pi}^{\pi} \cos x f(x) dx / \int_{-\pi}^{\pi} \cos^2 x dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos x f(x) dx,$$

and so on.

The approximation Ψ is the truncated Fourier series for $f(x)$. Hence, a Fourier series is an example of a Least Squares Approximation: a ‘Best Approximation’ in the least squares sense.

Example 4.3.3 Let $x = \{x_i\}, i = 1, \ldots, n$ and $y = \{y_i\}, i = 1, \ldots, n$ be the set of data points (x_i, y_i). Find the least squares best straight line fit to these data points.

We define the inner product in this case to be

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i,$$

Next we let

$$\Psi(x) = \{c_1(x_i - \overline{x}) + c_0\}, i = 1, \ldots, n$$

with $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$. Here $\phi_0(x) = 1$, $i = 1, \ldots, n$ and $\phi_1(x) = \{x_i - \overline{x}\}, i, \ldots, n$.

Observe that

$$\langle \phi_0(x), \phi_1(x) \rangle = \sum_{i=1}^{n} (x_i - \overline{x}) \times 1 = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \overline{x} = n\overline{x} - n\overline{x} = 0,$$

so ϕ_0, ϕ_1 are an orthogonal set. Hence, if we calculate c_0 and c_1 as follows

$$c_1 = \frac{\langle y, \phi_1 \rangle}{\langle \phi_1, \phi_1 \rangle} = \frac{\sum_{i=1}^{n} y_i (x_i - \overline{x})}{\sum_{i=1}^{n} (x_i - \overline{x})^2},$$

and (using $\langle \phi_0, \phi_0 \rangle = \sum_{i=1}^{n} 1 = n$)

$$c_0 = \frac{\langle y, \phi_0 \rangle}{\langle \phi_0, \phi_0 \rangle} = \frac{\sum_{i=1}^{n} y_i}{n},$$

then $\Psi(x)$ is the best linear fit (in a least squares sense) to the data points (x_i, y_i). 74
4.3.2 Approximations of Differing Degrees

Consider
\[\| f - \Psi \|_2 \leq \| f - p(x) \|_2, \quad \Psi, p \in P_n, \]
where \(\Psi = \sum_{i=0}^{n} c_i \phi_i(x) \), where \(\phi_i(x) \) form an orthogonal basis for \(P_1 \).

Note, \(p(x) \) may be ANY \(p(x) \in P_n \), polynomials of degree at most \(n \).

If we choose \(p(x) = \sum_{i=0}^{n-1} c_i \phi_i(x) \), then \(p(x) \in P_n \), and \(p(x) \) is the best approximation to \(f(x) \) of degree \(n - 1 \) (\(p(x) \in P_{n-1} \)). Now from above we have
\[\| f - \Psi \|_2 \leq \| f - \sum_{i=0}^{n-1} c_i \phi_i \|_2. \]
This means that the Least Squares Best approximation from \(P_n \) is at least as good as the Least Squares Best approximation from \(P_{n-1} \). i.e. Adding more terms (higher degree basis functions) does not make the approximation worse - in fact, it will usually make it better.

4.4 Minimax

In the previous two sections, we have considered the best approximation in situations involving the \(2 - norm \). However, a best approximation in terms of the maximum (or infinity) norm:
\[\| f - p^* \|_\infty \leq \| f - p \|_\infty, \quad p \in P_n, \]
implies that we choose the polynomial that minimises the maximum error over \([a, b] \). This is a more natural way of thinking about ‘Best Approximation’.

In such a situation, we call \(p^*(x) \) the \textbf{minimax} approximation to \(f(x) \) on \([a, b] \).

Example 4.4.1 Find the best constant (\(p^* \in P_0 \)) approximation to \(f(x) \) in the interval \([a, b] \).

Let \(c \in P_0 \), thus we want to minimise \(\| f(x) - c \|_\infty \):
\[\min_{c} \left\{ \max_{[a,b]} |f(x) - c| \right\}, \]
Clearly, the \(c \) that minimises this is
\[c = \frac{\max\{f\} + \min\{f\}}{2}. \]

Example 4.4.2 Find the best straight line fit (\(p^* \in P_1 \)) to \(f(x) = e^x \) in the interval \([0, 1]\).
We want to find the straight line fit, hence we let $p^* = mx + c$ and we look to minimise
\[||f(x) - p^*||_\infty = ||e^x - (mx + c)||_\infty \]
i.e.,
\[\min_{m,c} \left\{ \max_{[0,1]} |e^x - (mx + c)| \right\} . \]

Geometrically, the maximum occurs in three places, $x = 0$, $x = \theta$ and $x = 1$.

\begin{align*}
x = 0 : & \quad e^0 - (0 + c) = E & \text{(i)} \\
x = \theta : & \quad e^\theta - (m\theta + c) = -E & \text{(ii)} \\
x = 1 : & \quad e^1 - (m + c) = E & \text{(iii)}
\end{align*}

also, the error at $x = \theta$ has a turning point, so that
\[\frac{\partial}{\partial x} (e^x - (mx + c))_{x=\theta} = 0 \Rightarrow e^\theta - m = 0 \quad \Rightarrow \quad m = e^\theta \quad \Rightarrow \quad \theta = \log_e m . \]

(i) and (iii) imply $1 - c = E = e - m - c$ or,
\[m = e - 1 \approx 1.7183 \quad \Rightarrow \quad \theta = \log_e(1.7183) . \]

(ii) and (iii) imply $e^\theta + e - m\theta - c - m - c = 0$ or,
\[c = \frac{1}{2} [m + e - m\theta - m] \approx 0.8941 . \]

Hence the minimax straight line is given by $1.7183x + 0.8941$.

As the above example illustrates, finding the minimax polynomial $p_n^*(x)$ for $n \geq 1$ is not a straightforward exercise. Also, note that the process involves the evaluation of the error, E in the above example.

4.4.1 Chebyshev Polynomials Revisited

Recall that the Chebyshev polynomials satisfy
\[\| \frac{1}{2^n} T_{n+1}(x) \|_\infty \leq \| q(x) \|_\infty , \]
\[\forall q(x) \in P_{n+1} \text{ such that } q(x) = x^{n+1} + \ldots . \]
In particular, if we consider \(n = 2 \), then
\[
\left\| x^3 - \frac{3}{4}x \right\|_\infty \leq \left\| x^3 + a_2x^2 + a_1x + a_0 \right\|_\infty ,
\]
or
\[
\left\| x^3 - \frac{3}{4}x \right\|_\infty \leq \left\| x^3 - (-a_2x^2 - a_1x - a_0) \right\|_\infty ,
\]
\(\forall \) constants \(a_0, a_1, a_2 \).

Hence
\[
\left\| x^3 - \frac{3}{4}x \right\|_\infty \leq \left\| x^3 - p_2(x) \right\|_\infty ,
\]
\(\forall p_2(x) \in P_2 \).

This means the \(p^*(x) \in P_2 \) that is the minimax approximation to \(f(x) = x^3 \) in the interval \([-1, 1] \), i.e. the \(p^*(x) \) that satisfies
\[
\left\| x^3 - p^*_2(x) \right\|_\infty \leq \left\| x^3 - p_2(x) \right\|_\infty .
\]
is \(p^*_2(x) = \frac{3}{4}x \).

From this example, we can see that the Chebyshev polynomial \(T_{n+1}(x) \) can be used to quickly find the best polynomial of degree at most \(n \) (in the sense that the maximum error is minimised) to the function \(f(x) = x^{n+1} \) in the interval \([-1, 1] \).

Finding the minimax approximation to \(f(x) = x^{n+1} \) may see quite limited. However, in combination with the following results it can be very useful.

If \(p^*_n(x) \) is the minimax approximation to \(f(x) \) on \([a, b] \) from \(P_n \) then

1. \(\alpha p^*_n(x) \) is the minimax approximation to \(\alpha f(x) \) where \(\alpha \in \mathbb{R} \), and

2. \(p^*_n(x) + q_n(x) \) is the minimax approximation to \(f(x) + q_n(x) \) where \(q_n(x) \in P_n \).

(See Tutorial Sheet 8 for proofs and an example)

4.5 Equi-oscillation

From the above examples, we see that the error occurs several times.

- In Example 4.4.1: \(n=0 \) - maximum error occurred twice
- In Example 4.4.2: \(n=1 \) - maximum error occurred three times
In Example 4.4.3: n=2 - maximum error occurred four times

In order to find the minimax approximation, we have found \(p_0, p_1 \) and \(p_2 \) such that the maximum error equi-oscillates.

Definition: A continuous function is said to **equi-oscillate** on \(n \) points of \([a,b]\) if there exist \(n \) points \(x_i \)

\[
a \leq x_1 < x_2 < \cdots < x_n \leq b,
\]

such that

\[
|E(x_i)| = \max_{a \leq x \leq b} |E(x)|, \quad i = 1, \ldots, n,
\]

and

\[
E(x_i) = -E(x_{i+1}), \quad i = 1, \ldots, n-1.
\]

Theorem:

For the function \(f(x) \), where \(x \in [a,b] \), and some \(p_n(x) \in P_n \), suppose \(f(x) - p_n(x) \) equi-oscillates on at least \((n+2) \) points in \([a,b]\). Then \(p_n(x) \) is the **minimax** approximation for \(f(x) \).

(See Phillips & Taylor for a proof.)

The inverse of this theorem is also true: if \(p_n(x) \) is the minimax polynomial of degree \(n \), then \(f(x) - p_n(x) \) equi-oscillates on at least \((n+2) \) points.

The property of equi-oscillation characterises the minimax approximation.

Example 4.5.1 Construct the minimax, straight line approximation to \(x^{1/2} \) on \([0,1]\).

So we wish to find \(p_1(x) = mx + c \) such that

\[
\max_{[0,1]} |x^{1/2} - (mx + c)|
\]

is minimised.

From the above theorem we know the maximum must occur in \(n+2 = 3 \) places, \(x = 0, x = \theta \) and \(x = 1 \).

\[
\begin{align*}
 x = 0 : & \quad 0 - (0 + c) = -E \quad \text{(i)} \\
 x = \theta : & \quad \theta^{1/2} - (m\theta + c) = E \quad \text{(ii)} \\
 x = 1 : & \quad 1 - (m + c) = -E \quad \text{(iii)}
\end{align*}
\]
Also, the error at $x = \theta$ has a turning point:

\[
\Rightarrow \frac{\partial}{\partial x} \left(x^{1/2} - (mx + c) \right)_{x=\theta} = 0
\]

\[
\Rightarrow \left(\frac{1}{2} x^{-1/2} - m \right)_{x=\theta} = 0
\]

\[
\Rightarrow \frac{1}{2} \theta^{-1/2} - m = 0
\]

\[
\Rightarrow \theta = \frac{1}{4m^2}.
\]

Combining (i) and (iii): $-c = 1 - m - c \Rightarrow m = 1$
Combining (ii) and (iii):

\[
\Rightarrow \theta^{1/2} - (m\theta + c) + 1 - (m + c) = 0
\]

\[
\Rightarrow \frac{1}{2m} - \frac{1}{4m} + 1 - m - 2c = 0
\]

\[
\Rightarrow \frac{1}{2} - \frac{1}{4} + 1 - 1 - 2c = 0
\]

\[
\Rightarrow c = \frac{1}{8}.
\]

Hence the minimax straight line approximation to $x^{1/2}$ is given by $x + \frac{1}{8}$.

On the other hand, the least squares, straight line approximation was $\frac{4}{5}x + \frac{4}{15}$, making it clear that different norms lead to different approximations!

4.6 Chebyshev Series Again

The property of equi-oscillation characterises the minimax approximation. Suppose we could produce the following series expansion,

\[
f(x) = \sum_{i=0}^{\infty} a_i T_i(x)
\]

for $f(x)$ defined on $[-1, 1]$. This is called a Chebyshev series.

Not such a crazy idea! Put $x = \cos \theta$, then

\[
f(\cos \theta) = \sum_{i=0}^{\infty} a_i T_i(\cos \theta) = \sum_{i=0}^{\infty} a_i \cos(i\theta), \quad 0 \leq \theta \leq \pi,
\]

which is just the Fourier cosine series for the function $f(\cos \theta)$.

Hence, it is a series we could evaluate (using numerical integration if necessary).

Now, suppose the series converges rapidly so that,

\[
|a_{n+1}| \gg |a_{n+2}| \gg |a_{n+3}| \gg \ldots
\]

so a few terms are a good approximation of the function.
Let $\Psi(x) = \sum_{i=0}^{n} a_i T_i(x)$ then
\[
f(x) - \Psi(x) = a_{n+1} T_{n+1}(x) + a_{n+2} T_{n+2}(x) + \ldots
\]
\[
\simeq a_{n+1} T_{n+1}(x),
\]
or, the error is dominated by the leading term $a_{n+1} T_{n+1}(x)$. Now $T_{n+1}(x)$ equi-oscillates $(n+2)$ times on $[-1,1]$.

If $f(x) - \Psi(x) = a_{n+1} T_{n+1}(x)$, then $\Psi(x)$ would be the minimax polynomial of degree n to $f(x)$. Since
\[
f(x) - \Psi(x) \simeq a_{n+1} T_{n+1}(x),
\]
$\Psi(x)$ is not the minimax but is a polynomial that is ‘close’ to the minimax, as long as a_{n+2}, a_{n+3}, \ldots are small compared to a_{n+1}.

The actual error almost equi-oscillates on $(n+2)$ points.

Example 4.6.1: Find the minimax quadratic approximation to $f(x) = (1 - x^2)^{1/2}$ in the interval $[-1,1]$.

First, we note that if $x = \cos \theta$ then $f(\cos \theta) = (1 - \cos^2 \theta)^{1/2} = \sin \theta$ and the interval $x \in [-1,1]$ becomes $\theta \in [0,\pi]$.

The Fourier cosine series for $\sin \theta$ on $[0,\pi]$ is given by
\[
\sin \theta = \frac{2}{\pi} - \frac{4}{\pi} \left[\frac{\cos 2\theta}{3} + \frac{\cos 4\theta}{15} + \frac{\cos 6\theta}{35} + \ldots \right]
\]

So with $x = \cos \theta$, we have
\[
(1 - x^2)^{1/2} = \frac{2}{\pi} - \frac{4}{\pi} \left[\frac{T_2(x)}{3} + \frac{T_4(x)}{15} + \frac{T_6(x)}{35} + \ldots \right],
\]
where $-1 \leq x \leq 1$.

Thus let use consider the quadratic
\[
p_2(x) = \frac{2}{\pi} - \frac{4}{\pi} \frac{T_2(x)}{3} = \frac{2}{\pi} - \frac{4}{3\pi} (2x^2 - 1)
\]
\[
= \frac{2}{3\pi} (3 - 2(2x^2 - 1)) = \frac{2}{3\pi} (5 - 4x^2).
\]

The error
\[
f(x) - p_2(x) \approx \frac{4}{\pi} \frac{T_4(x)}{15},
\]
which oscillates $4 + 1 = 5$ times in $[-1,1]$. At least 4 equi-oscillation points are required for $p_2(x)$ to be the minimax approximation of $(1 - x^2)^{1/2}$, so we need to see whether the above oscillation points are of equal amplitude.

$T_4(x)$ has extreme values when $8x^4 - 8x^2 + 1 = \pm 1$, i.e. at

$$ x = 0, \ x = 1, \ x = -1, \ x = 1/\sqrt{2} \text{ and } x = -1/\sqrt{2}. $$

<table>
<thead>
<tr>
<th>x</th>
<th>$(1 - x^2)^{1/2}$</th>
<th>$p_2(x)$</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = 0$</td>
<td>1</td>
<td>10/3\pi</td>
<td>-0.0610</td>
</tr>
<tr>
<td>$x = \pm 1/\sqrt{2}$</td>
<td>1/\sqrt{2}</td>
<td>2/\pi</td>
<td>0.0705</td>
</tr>
<tr>
<td>$x = \pm 1$</td>
<td>0</td>
<td>2/3\pi</td>
<td>-0.2122</td>
</tr>
</tbody>
</table>

So the error oscillates but not equally. Hence, $p_2(x)$ is not quite the minimax approximation to $f(x) = (1 - x^2)^{1/2}$, but it is a good first approximation.

The true minimax quadratic to $(1 - x^2)^{1/2}$ is actually $(\frac{9}{8} - x^2) = (1.125 - x^2)$, and thus our estimate of $(1.061 - 0.8488x^2)$ is not bad.

4.7 Economisation of a Power Series

Another way of exploiting the properties of Chebyshev polynomials is possible for functions $f(x)$ for which a power series exists.

Consider the function $f(x)$ which equals the power series

$$ f(x) = \sum_{n=1}^{\infty} a_n x^n. $$

Let us assume that we are interested in approximating $f(x)$ with a polynomial of degree m.

One such approximation is

$$ f(x) = \sum_{n=1}^{m} a_n x^n + R_m, $$

which has error R_m. Can we get a better approximation of degree m than this?

Yes! A better approximation may be found by finding a function $p_m(x)$ such that $f(x) - p_m(x)$ equi-oscillates at least $m + 2$ times in the given interval.

Consider the truncated series of degree $m + 1$

$$ f(x) = \sum_{n=1}^{m} a_n x^n + a_{m+1} x^{m+1} + R_{m+1}. $$

The Chebyshev polynomial of degree $m + 1$, equi-oscillates $m + 2$ times, and equals

$$ T_{m+1}(x) = 2^m x^{m+1} + t_{m-1}(x), $$
where t_{m-1} are the terms in the Chebyshev polynomial of degree at most $m - 1$. Hence, we can write

$$x^{m+1} = \frac{1}{2^m} (T_{m+1}(x) - t_{m-1}(x)).$$

Substituting for x^{m+1} in our expression for $f(x)$ we get

$$f(x) = \sum_{n=1}^{m} a_n x^n + \frac{a_{m+1}}{2^m} (T_{m+1}(x) - t_{m-1}(x)) + R_{m+1}.$$

Re-arranging we find a polynomial of degree at most m,

$$p_m(x) = \sum_{n=1}^{m} a_n x^n - \frac{a_{m+1}}{2^m} t_{m-1}(x).$$

This polynomial will be a pretty good approximation to $f(x)$ since

$$f(x) - p_m(x) = \frac{a_{m+1}}{2^m} T_{m+1}(x) + R_{m+1},$$

which oscillates $m + 2$ times almost equally provided R_{m+1} is small.

Although $p_m(x)$ is not the minimax approximation to $f(x)$ it is close and the error

$$\frac{a_{m+1}}{2^m} T_{m+1}(x) + R_{m+1} \leq \frac{a_{m+1}}{2^m} + R_{m+1},$$

since $|T_{m+1}(x)| \leq 1$, is generally a lot less than the error R_m for the truncated power series of degree m.

This process is called the Economisation of a power series.

Example 4.7.1: The Taylor expansion of $\sin x$ is

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + R_7,$$

where

$$R_7 = \frac{x^7}{7!} \frac{d^7}{dx^7} (\sin x)_{x=\theta} = \frac{x^7}{7!} (-\cos \theta).$$

For $x \in [-1, 1]$, $|R_7| \leq \frac{1}{7!} \approx 0.0002$.

However,

$$\sin x = x - \frac{x^3}{3!} + R_5,$$

where

$$R_5 = \frac{x^5}{5!} \frac{d^5}{dx^5} (\sin x)_{x=\theta} = \frac{x^5}{5!} (\cos \theta),$$

so $|R_5| \leq \frac{1}{5!} \approx 0.0083$. The extra term makes a big difference!

Now suppose we express x^5 in terms of Chebyshev polynomials,

$$T_5(x) = 16x^5 - 20x^3 + 5x,$$
so

\[x^5 = \frac{T_5(x) + 20x^3 - 5x}{16}. \]

Then

\[
\sin x = x - \frac{x^3}{6} + \frac{1}{5!} \left(\frac{T_5(x) + 20x^3 - 5x}{16} \right) + R_7
\]

\[= x \left(1 - \frac{1}{16 \times 4!} \right) - \frac{x^3}{6} \left(1 - \frac{1}{16} \right) + \frac{1}{16 \times 5!} T_5(x) + R_7. \]

Now \(|T_5(x)| \leq 1\) for \(x \in [-1, 1]\) so if we ignore the term in \(T_5(x)\) we obtain

\[
\sin x = x \left(1 - \frac{1}{16 \times 4!} \right) - \frac{x^3}{6} \times \frac{15}{16} + \text{Error}
\]

where

\[
|\text{Error}| \leq |R_7| + \frac{1}{16 \times 5!} |T_5(x)|,
\]

\[\leq 0.0002 + \frac{1}{16 \times 120} = 0.0002 + \frac{1}{1920} \]

\[\leq 0.0002 + 0.00052 \simeq 0.0007. \]

This new cubic has maximum error of about 0.0007, compared with 0.0083 for \(x - \frac{x^3}{6}\).